

CMF-019 elevates neuronal insulin sensitivity: an implication of therapeutic potential of Alzheimer's disease <u>Ka-Fai Oscar MA*, Koon-Ho CHAN, Roy Chun-Laam NG</u> Department of Medicine, The University of Hong Kong, Laboratory Block, Hong Kong

*Correspondence: Mr. OKF MA, u3004636@connect.hku.hk

Introduction:

- \succ Increasing evidence has demonstrated the association between neuronal insulin resistance and Alzheimer's Disease (AD) pathogenesis.
- \geq Neuronal insulin resistance not only enhances the activity of γ -secretase, A β production and secretion, but also induces the activation of GSK3 β , which could lead to Tau phosphorylation and aggregation.
- > Reports have shown that Apelin can increase glucose uptake by promoting GLUT4 translocation and restore insulin sensitivity of TNF α -induced insulin resistance via activating PI3K/AKT and Erk1/2 signalling pathways.
- \succ CMF-019 is a novel invented Apelin receptor (APJ) agonist with specific activity on G α_i pathway that enhances insulin signalling.

> We believe that CMF-019 can be a promising therapeutic drug for AD by enhancing neuronal insulin sensitivity through the activation of PI3K-AKT and Erk1/2 signalling.

Apelin or CMF-019, enhances the phosphorylation of insulin signaling molecules, such as AMPK, ERK and Akt, and

further induces GLUT4 translocation to plasma membrane for glucose uptake.

30 min

HPLC/MS/MS

Results: Figure 1 N.S. В Α CMF-019 (0.1 nM) CMF-019 (0.1 nM) Apelin-13 (2 μM) Apelin-13 (2 μM) Insulin (10 nM) - + - + - + - + - + Insulin (10 nM) Insulin-induced Insulin-induced insulin resistance Total Erk Total Akt α**-tubulin** α**-tubulin**

Figure 1. CMF-019 elevates insulin sensitivity via PI3K/Akt signaling pathway, but not MAPK-ERK signaling pathway (A) Insulin resistance HT-22 (HT-22_{IR}) had decreased Akt

Figure 2

Figure 3

CMF-019 (0.1 <u>nM</u>)	-	-	-	-	-	-	-	-	+	+	+	+
Apelin-13 (2 μΜ)	-	-	-	-	+	+	+	+	-	-	-	-
Insulin (10 <u>nM</u>)	-	+	-	+	-	+	-	+	-	+	-	+
Insulin-induced insulin resistance	-	-	+	+	-	-	+	+	-	-	+	+
	Balance of	C. Caralle	and the second	and the second second			-	and the second		1.00	-	Sec.
PAMPK	1	per	-	-	1	-	-	H	-	-	-	
рАМРК Total AMPK	1	-	1	1			I	I			-	-

Figure 2. CMF-019 enhances AMPK phosphorylation in HT-22_{IR} neurons Representative western blot image indicates CMF-019 increases insulininduced AMPK phosphorylation in HT-22_{IR} hippocampal neurons.

phosphorylation upon 10 nM insulin induction compared with control HT22 (p<0.01). CMF-019 pre-treatment can improve insulin sensitization in HT-22_{IR} cells by retrieving the Akt phosphorylation levels compared the control HT22 cells (p<0.05). (B) Neither insulin-induced insulin resistance nor CMF-019 / Apelin treatment has altered the phosphorylation level of Erk 2/3 in HT22 cells (p>0.05).

Figure 3. Pharmacokinetic studies of CMF-019 between brain and plasma detected by LC-MS/MS analysis Pharmacokinetic studies of CMF-019 between brain and plasma detected by LC-MS/MS analysis.

Conclusions:

- > CMF-019 pretreatment alleviated the insulin sensitivity by increasing higher level of Akt phosphorylation in the HT22 cells. However, there is no significant difference between CMF-019-treated, Apelin-13-treated and untreated HT22_{IR} cells on the level of pErk1/2, suggesting that CMF-019 enhances insulin sensitivity through PI3K/Akt pathway instead of Erk signalling pathway.
- > AMPK also plays a role in increasing glucose uptake by accelerating GLUT4 translocation. Upon insulin stimulation, the level of AMPK phosphorylation is enhanced in HT-22_{IR} cells when compare to that of HT-22.
- \succ LC-MS/MS analysis indicated that CMF-019 may cross the blood brain barrier.

References:

- 1) RCL Ng. et al. (2020) Mol Psychiatry
- 2) J Min et al. (2019) J Neuroinflammation 16(1):110
- 3) RCL Ng. et al. (2016) Mol Neurodegener 11(1):71

Acknowledgements: HMRF 06172306