

Shifts in gut antibiotics resistance genes (ARGs) after the exposure to different *H. pylori* eradication therapies

LL Wang¹, HB Yao ², T Tong¹, KS Lau¹, A Chan³, JWK Ho², SY Leung³, WK Leung¹ ¹ Department of Medicine, The University of Hong Kong, Hong Kong ² School of Biomedical Science, The University of Hong Kong, Hong Kong ³ Centre for PanorOmic Science (CPOS), The University of Hong Kong, Hong Kong

Introduction

Antibiotics used in *H. pylori* eradication therapies could alter the gut microbiota^[1] as well as ARGs, thus increasing the risk of antibiotics resistance. We aimed to investigate the relationship between antibiotics use and subsequent gut ARGs patterns after *H. pylori* eradication

Methods

H. pyle	o <i>ri</i> infected patient (N = 44)	tS	
Treatment naive	Failed prev	ious treatment	Raw sec dat
CLA (N = 21) Clarithromycin based triple therapy	LEVO (N = 10) Levofloxacin- based quadruple therapy	OTHER (N = 13) Other combinations	Quality (Fast

Stool sample collected:

- Baseline: before treatment
- 6-week after the treatment
- 6-month after the treatment

Metagenomic sequencing (Illumina NovaSeq 6000, PE 150bp)

Fig. 2

In CLA group, the relative abundance of ARGs in macrolide-lincosamidestreptogramin (MLS) class increased at 6-week, and returned to baseline level at 6-month; In LEVO group, MLS and beta-lactam class decreased, while multidrug, fluoroquinolone and trimethoprim class increased at 6week, and all returned to near baseline level at 6-month; No significant difference was found in OTHER group.

3. LEVO group have the highest number of significantly changed unique ARGs at 6-week

	CLA	LEVO	OTHER
	APH(3')-IIIa,	mdtA, E. coli gyrA, aadA5, E. coli ampC,	AAC(6')-Im, acrD,
	aad(6) <i>,</i>	kdp, mphA, AcrS, E. coli GlpT mutation, E.	tet(A), vanSD, floR
	cepA, ErmF	coli soxS mutation, emrA, E. coli ampH, E.	
ARGs with		coli acrA, E. coli emrE, mdtH, E. coli ampC1,	
increased		gadX, TEM-1, qacEdelta1, evgA, E. coli acrR	
relative		mutation, emrK, YojI, mdtN, mdtF, baeS,	
abundance		mdtP, PmrF, mdtM, mdtG, E. coli mdfA,	
		TolC, eptA, E. coli marR mutation, AcrF, Ugd,	
		E. coli soxR mutation, emrY, mdtO, E. coli EF-	
		Tu mutants, mdtE, sul1, evgS,	
ARGs with	Mef(En2),		ErmB,
decreased	pmrA,	OXA-347, ErmF	Bifidobacterium
relative	tetA(46)		bifidum ileS, tetW
abundance			

analysis

Results

1. The impact of antibiotics to ARG abundance varies in different treatment groups

Table. 1 unique ARGs changed at 6-week

In CLA group, 7 unique ARGs altered at 6-week (including 4 increased; 3 decrease); In LEVO group, 45 unique ARGs significantly changed at 6-week, 43 of them had an increased abundance; In OTHER group, 8 unique ARGs significantly changed (5 increased and 3 decreased);

Conclusion

Antibiotic used in various *H. pylori* eradication therapies had a significant impact on the total gut ARGs abundance, which last for at least 6 months.

Fig. 1 the total ARG abundance (RPKM)

In CLA group, the ARG abundance increased at 6-week and returned to baseline level at 6-month (Figure 1A); in LEVO group, there was no significant increase at 6-week, but had an increase trend after 6-month (Figure 1A); In OTHER group, no significant difference was observed at 6-week or 6-month (Figure 1A); Regardless treatment difference, the total ARG abundance increased at 6-week and persist high level at 6month (Figure 1B);

2. The ARG changes at drug class level

However, short-term changes in specific ARGs are more prevalent after treatment with levofloxacin-based therapy.

Reference

- 1. Liou JM, Chen CC, Chang CM, et al. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: a multicentre, open-label, randomised trial. Lancet Infect Dis 2019;19:1109-1120
- Li, D., et al., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015. 31(10): p. 1674-6.
- Alcock, B.P., et al., CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res, 2020.
 48(D1): p. D517-d525.
- Hendriksen, R.S., et al., *Global monitoring of antimicrobial resistance based* on metagenomics analyses of urban sewage. Nat Commun, 2019. **10**(1): p. 1124.