

Epidemiology, mortality and effectiveness of prophylaxis for *Pneumocystis jiroveci* pneumonia among rheumatic patients: a territory-wide study

SCW Chan¹, HY Chung¹, CS Lau¹, PH Li¹

¹ Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong Table 1 Baseline characteristics, frequency of PJP and prophylaxis prescription

Introduction

Pneumocystis jiroveci pneumonia (PJP) is an opportunistic

	Total	PJP	No PJP	P value	Prophylaxis	No prophylaxis	P value
All patients	21,587	48 (0.2%)	21,539 (99.8%)		1141 (5.3%)	20,446 (94.7%)	
Age	58.1 ± 17.4	58.5 ± 18.4	58.1 ± 17.4	0.85	52.8±17.7	58.3 ± 17.3	< 0.01
Male	5822 (27.0%)	16 (33.3%)	5806 (27.0%)	0.32	285 (25.0%)	5537 (27.1%)	0.12
Prophylaxis	1141 (5.3%)	0	1141 (5.3%)	0.10	_	_	_
RA	11,646	13 (0.1%)	11,633 (99.9%)		72 (0.6%)	11,574 (99.4%)	
Age	63.4 ± 15.8	68.3 ± 17.3	13.4±15.8	0.27	63.7±14.1	63.4 ± 15.8	0.89
Male	2507 (21.5%)	5 (38.5%)	2502 (21.5%)	0.14	17 (23.6%)	2490 (21.5%)	0.67
Prophylaxis	72 (0.6%)	0	72 (0.6%)	0.78	_	_	_
SLE	5460	22 (0.4%)	5438 (99.6%)		629 (11.5%)	4831 (88.5%)	
Age	48.8±16.3	46.8±14.2	48.8±16.4	0.57	46.4 ± 16.6	49.1±16.3	< 0.01
Male	551 (10.1%)	7 (31.8%)	544 (10.0%)	< 0.01	73 (116%)	478 (9.9%)	0.18
Prophylaxis	629 (11.5%)	0	629 (11.6%)	0.09	-	_	_
SpA	2918	0	2918 (100.0%)		49 (1.7%)	2869 (98.3%)	
Age	51.8 ± 16.3	_	51.8±16.3	_	60.0 ± 14.6	51.7±16.3	< 0.01
Male	2229 (76.4%)	_	2229 (76.4%)	_	42 (85.7%)	2187 (76.2%)	0.12
Prophylaxis	49 (1.7%)	_	49 (1.7%)	_	_	_	-
IMM	1026	7 (0.7%)	1019 (99.3%)		220 (21.4%)	806 (78.6%)	
Age	61.8 ± 15.9	66.6±14.6	61.8 ± 15.9	0.43	59.7±13.3	62.4±16.5	0.01
Male	343 (33.4%)	2 (28.6%)	341 (33.5%)	0.78	78 (35.5%)	265 (32.9%)	0.47
Prophylaxis	220 (21.4%)	0	220 (21.6%)	0.17	_	_	_
AAV	430	6 (1.4%)	424 (98.6%)		135 (31.4%)	295 (68.6%)	
Age	65.0 ± 17.8	64.0 ± 18.0	65.0±17.8	0.89	63.7±18.4	65.6±17.5	0.30
Male	177 (41.2%)	2 (33.3%)	175 (41.3%)	0.70	67 (49.6%)	110 (37.3%)	0.02
Prophylaxis	135 (31.4%)	0	135 (31.8%)	0.10	_	_	-
SSc	109	2 (1.8%)	107 (98.2%)		36 (33.0%)	73 (67.0%)	
Age	54.4 ± 15.9	79.0 ± 14.1	54.0 ± 15.6	0.03	52.5 ± 18.5	55.4 ± 14.4	0.37
Male	15 (13.8%)	0	15 (14.0%)	0.57	8 (22.2%)	7 (9.6%)	0.07
Prophylaxis	36 (33.0%)	0	36 (33.6%)	0.32			

infection affecting immunocompromised individuals. However, evidence regarding the burden and effectiveness of prophylaxis among rheumatic patients remains limited. Delineating the epidemiology, predictors of mortality and efficacy of prophylaxis among rheumatic patients is urgently needed.

Methodology

We performed a territory-wide cohort study of rheumatic patients in Hong Kong. All patients with a diagnosis of antineutrophil cytoplasmic antibody-associated vasculitis (AAV), immune-mediated myositis (IMM), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), or spondyloarthritis (SpA) between 2015-2019 were included. Prevalence, prophylaxis and mortality of PJP were calculated. Number needed to treat (NNT) analysis was also performed.

PJP Pneumocystis jiroveci pneumonia; SSC systemic sclerosis, AAV ANCA-associated vasculitis; IMM immune-mediated myositis; SLE systemic lupus erythematosus; RA rheumatoid arthritis; SpA spondyloarthritis

Annual incidence of PJP infections (per 10 000) and frequency of prophyalxis prescription

Results

Out of 21,587 patients (54% RA, 25% SLE, 13% SpA, 5% IMM, 2% AAV and 1% SSc), 1141 (5.3%) patients were prescribed PJP prophylaxis. 48/21,587 (0.2%) developed PJP. No patients who developed PJP received prophylaxis prior to infection (Table1). The incidence of PJP was highest among SSc, AAV, and IMM patients (Figure 1). Within these diseases, the majority of PJP occurred while patients were on glucocorticoids at daily prednisolone-equivalent doses of

Fig. 1 Annual incidence of PJP and prophylaxis prescriptions among different rheumatic disease categories

Table 2 Effectiveness of PJP prophylaxis among differentrheumatic diseases

Diagnosis	Total	Ever PJP	No PJP	ARR (%)	NNT
All patients	21,587	48	21,540		435
Prophylaxis		0	1142	0.23	
No prophylaxis		48	20,398		
RA	11,646	13	11,633		909
Prophylaxis		0	72	0.11	
No prophylaxis		13	11,561		
SpA	2918	0	2918	-	_
Prophylaxis		0	49		
No prophylaxis		0	2869		
SLE	5460	22	5438		217
Prophylaxis		0	629	0.46	
No prophylaxis		22	4809		
IMM	1026	7	1019		114
Prophylaxis		0	220	0.88	
No prophylaxis		7	799		
AAV	430	6	424		48
Prophylaxis		0	135	2.08	

15mg/day (P15) or above (Figure 2). PJP prophylaxis was effective with NNT for SSc, AAV and IIM being 36, 48 and 114 respectively (Table 2). Glucocorticoid dose at time of PJP was independently associated with PJP-related mortality (OR=1.09, 95% CI=1.02-1.64, p=0.02).

Conclusion

PJP is an uncommon but important infection among rheumatic patients, Glucocorticoid dose is independently associated with PJP-related mortality. PJP prophylaxis is effective and should be considered in patients with SSc, AAV and IMM, especially those receiving glucocorticoid doses above P15.

No prophylaxis		6	289		
SSc	109	2	107		36
Prophylaxis		0	36	2.81	
No prophylaxis		2	71		

PJP Pneumocystis jiroveci pneumonia; SSC systemic sclerosis; AAV ANCAassociated vasculitis; IMM immune-mediated myositis; SLE systemic lupus erythematosus; RA rheumatoid arthritis; SpA spondyloarthritis; ARR absolute risk reduction; NNT number needed to treat

GC dose at PJP diagnosis (median and IQR)

Fig. 2 Box-and-whisker plot of GC dose (median and interquartile range) at PJP diagnosis. *GC* glucocorticoid; *PJP Pneumocystis jiroveci* pneumonia; *IQR* interquartile range; *P15* glucocorticoid at 15 mg daily prednisolone-equivalent dose; *SSC* systemic sclerosis; *AAV* ANCA-associated vasculitis; *IMM* immune-mediated myositis; *SLE* systemic lupus erythematosus; *RA* rheumatoid arthritis