

Clinical outcomes among patients with acute coronary syndrome and concomitant multivessel disease based on a novel angiography-based index in non-culprit vessels CKL Leung¹, LY Lam¹, KY Li¹, ASY Yu², MZ Wu², QW Ren², PF Wong², YK Tse¹, SSY Yu¹, HL Li¹, Y Feng³, Y Huo³, HF Tse² & KH Yiu². ¹ Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong ² Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong ³ PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China

Introduction

• Fractional flow reserve (FFR) is a physiological index which

Results

measures the degree of myocardial ischaemia caused by coronary artery stenoses, and FFR-guided revascularization has been shown to provide clinical benefits

- Computational pressure-flow dynamics derived fractional flow reserve (caFFR) is a novel index which estimates FFR values, and was shown to have high accuracy
- Compared to FFR, caFFR does not require the use of pressure guidewire as well as induction of hyperaemia, and it can be analzed retrospectively if suitable coronary angiograms are available
- In patients with acute coronary syndrome (ACS) and multivessel disease, significant ischaemia-producing lesions in non-culprit vessels may affect clinical outcomes
- This study aimed to evaluate the prognostic value of non-culprit

	MACE at 3 years	Univariate analy	sis Multivariate analysis		lysis
		HR (95% CI)	P value	HR (95% CI)	P value
	Age≥65	1.62 (0.99-2.64)	0.056	0.89 (0.49-1.62)	0.700
	Male gender	0.64 (0.38-1.08)	0.098	0.74 (0.42-1.30)	0.294
	Charlson Comorbidity Index≥3	2.15 (1.29-3.61)	0.004	1.73 (0.91-3.30)	0.097
	History of PCI	2.78 (1.46-5.31)	0.002	2.58 (1.30-5.13)	0.007
	Hypertension	1.11 (0.69-1.79)	0.673		
	Diabetes mellitus	1.48 (0.83-2.62)	0.184		
	Hyperlipidaemia	0.76 (0.45-1.27)	0.292		
	STEMI	0.91 (0.56-1.48)	0.703		
	Complete PCI	0.49 (0.30-0.79)	0.003	0.60 (0.37-0.98)	0.043
	Ischaemic group	2.06 (1.19-3.57)	0.010	1.79 (1.02-3.14)	0.044
	Table 1: Univariate and Multivariate Cox Proportional Hazards Regression Models for MACE After multivariable adjustment After multivariable adjustment				

vessel ischaemia, based on caFFR assessment, among ACS patients with multivessel disease

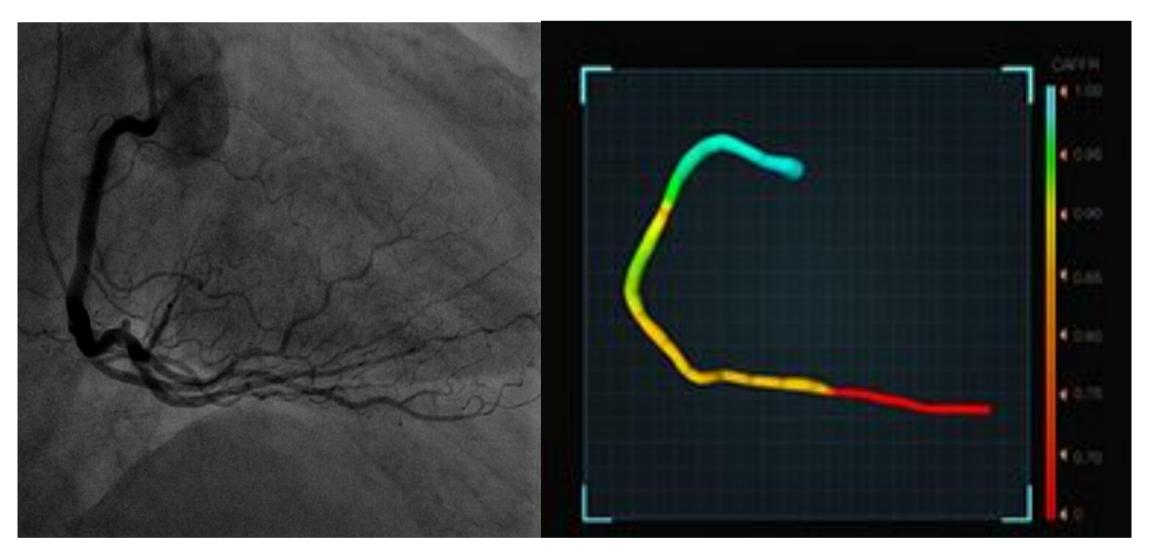


Figure 1: caFFR analysis

Coronary angiogram (left) and reconstruction of vessel contour (right

Methods

• Patients presenting with ACS (including STEMI, NSTEMI and unstable angina) and multivessel disease (≥50% diameter

After multivariable adjustment, history of PCI and non-culprit
vessel ischaemia were independent predictors of MACE at

stenosis in ≥2 major coronary arteries) between 2014-2016 in Queen Mary Hospital were retrospectively included

- Coronary angiograms and mean aortic pressure data were retrieved for caFFR analysis
- Based on FFR threshold of 0.8, patients were stratified into 2 groups according to caFFR values in non-culprit vessels:
- **1. Ischaemic group:** ≥1 non-culprit vessel with caFFR≤0.8
- 2. Non-ischaemic group: no non-culprit vessel with caFFR≤0.8
- Primary endpoint was major adverse cardiovascular events (MACE), defined as a composite of all-cause mortality, nonfatal myocardial infarction and any repeat revascularization

Reference

1. Mehta SR, Wood DA, Storey RF, et al. Complete revascularization with multivessel PCI for myocardial infarction. *N Engl J Med*. 2019;381:1411-1421

- three years; **complete PCI** to all diseased vessels was a negative independent predictor
- The results are in line with the COMPLETE trial [1] that showed superior outcomes in STEMI and multivessel disease patients receiving complete PCI strategy compared to culpritonly PCI strategy, while our results show that non-culprit vessel ischaemia is also an important prognostic factor

Conclusion

- In patients with ACS and multivessel disease, non-culprit vessel ischaemia is associated with increased risk of MACE
- Physiological testing may have a role in managing ACS
 - Contact details Leung Ka Lam Calvin Email: Iklcalvin8@gmail.com Phone: 97882983