Oxford-Yale expedition to Pike’s Peak, Colorado

J. S. Haldane and colleagues - July 1911
Signalling hypoxia in cells

$O_2$ → Sensor → Epo

Krogh
J. Physiol 1919 52 409-415

Co-ordination of blood vessel growth and cellular metabolism
Hoppeler and Kayar 1991

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Signalling hypoxia in cells

O₂ → Sensor → Epo

Cobalt poisoning causes erythrocytosis without obvious metabolic compromise

Transgenic marker gene strategy indicates that erythropoietin producing cells are Interstitial fibroblasts
Dissection of hypoxia signalling pathways

- ERYTHROPOIETIN
- Angiogenesis
- Vasomotor regulators
- Matrix metabolism
- Transcription factors
- Iron metabolism
- Transporters
- Redox control
- Ion Channels
- Growth factors
- Glucose metabolism
- Oncogenes
- Mitochondrial control
- Apoptotic regulators
- Fat metabolism

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Regulation of HIF by oxygen

Oxygen availability

Cellular iron/cobalt

Signal

HIF-α

Regulated protein stability

Regulated activity

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Certain types of kidney cancer are associated with

- Excessive red cell production (erythropoietin)
- Excessive blood vessel growth (angiogenesis)

These cancer are defective for the VHL tumour suppressor (VHL).

The von Hippel-lindau tumour suppressor is directly linked to hypoxia pathways.

Transcriptional responses to hypoxia

Destruction in the presence of oxygen

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Signalling modification is prolyl hydroxylation

Biochemical analysis
- Heat labile extract
- Non-enzymatic oxidation
- NADH/NADH oxidase
- Oxygen
- Iron
- ATP

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
HIF prolyl hydroxylation implies a mechanism of oxygen sensing.
HIF prolyl hydroxylases - a set of Fe(II) and 2-oxoglutarate dioxygenases that are conserved throughout the animal kingdom

Regulation of HIF by prolyl and asparaginyl hydroxylation

HIF prolyl hydroxylases

Pro → Pro-OH

HIF asparaginyl hydroxylase

Asn → Asn-OH

ODDD

*  tA

HIF-α

VHL E3 Ligase

Poly-ubiquitylation

Proteasomal destruction

Co-activator recruitment

Oxygen
Implications of Darwinian evolution for understanding (and translating) biology

Basic helix-loop-helix proteins
(eukaryotes; yeast, plants, animals)

PAS domain proteins
(sensing functions, many phyla; incl. prokaryotes, eukaryotes)

PHD – like enzymes
(range of non-metazoan as well as non-metazoan species)

FIH – like enzymes
(range of species incl. prokaryotes and eukaryotes)

* * *

bHLH – PAS – ODD - CAD
Hypoxia inducible factor (HIF)
(basic-helix-loop-helix PAS proteins)
Therapeutic potential of activating HIF pathways by inhibition of HIF hydroxylases

Erythropoiesis - Epo, Iron metabolism

Cytoprotection - Energy metabolism, Anti-oxidants

Stem cell behaviour - Transcription factors

Glucose homestasis - Energy metabolism

Angiogenesis - Growth factors, Receptors, Matrix

Wound healing - Inflammation, oxygen delivery

Adiposity - Lipid metabolism, adipose differentiation

Respiratory stimulant - Channels glomus cells
Co-evolution of HIF hydroxylase pathways and animals

HIF

PHD

VHL FIH

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Would it be possible to design more selective small molecule interventions on the PHD/HIF system?

Mammalian HIF has two hydroxylation sites NODD (N-terminal) and CODD (C-terminal) evidence for selective hydroxylase activity from human genetics.

- Re-introduction of wild type and mutant human PHD2 into MEFs that are null for all 3PHDs
- Assay HIF status by hydroxy-amino acid specific antibodies – block of degradation with MG132

---

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Would it be possible to design more selective small molecule interventions on the PHD/HIF system?
Multiple HIF/PHD isoforms co-evolved with specialist oxygen delivery systems in animal evolution

Relative isoform specificity of small molecule inhibitors of PHD/HIF hydroxylation should be possible

Would this be useful?
Altitude physiology and the concept of oxygen sensing

J.S. Haldane and colleagues, Pike's Peak 1911

Acute acclimatization

pre-exposure to hypoxia (days)  \[\text{pre-increased sensitivity to acute hypoxia (minutes)}\]
Are specific components of the hypoxia response linked to specific components of the HIF/PHD system?

Ventilatory sensitivity to acute hypoxia pre- and post- 7 days at 10% oxygen (ca. 5000m)
Enhanced hypoxic ventilatory response in Phd2+/− mice (10% O2 + 3%CO2)
Ventilation acclimatization and erythropoietic responses to simulated altitude are largely drive by the HIF-2α isoform.

Conditional inactivation of HIF-α by Rosa 26 driven CreER

Animals studied 10 days after first dose of tamoxifen

Sensitizing exposure 10% O₂ (up to 7 days)

Acute exposure 10% O₂ + 3 CO₂ (5 min)
Ventilation acclimatization to simulated altitude is largely driven by HIF-2α.

Inducible inactivation of HIF-1α or HIF-2α in adult life

Proliferation of cells in the carotid body after 7 days exposure to 10% oxygen – BrDU labelling
Pan-genomic analysis of binding of HIF binding

Comparison of HIF-1$\alpha$ and HIF-2$\alpha$ binding by ChIP-seq (MCF7 breast cancer cells)
Pan-genomic analyses reveal differences in the transcriptional architecture of HIF-1α binding versus HIF-2α binding.

HIF-1α binding sites cluster much more strongly at promoters than HIF-2α binding sites.

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved.
Marked isoform selective activity of chromatin bound HIF-α is strongly distant dependent

Near complete preferential action of HIF-2 on genes lying at a distance from DNA binding site

Genes lying close (<2Kb) to their HIF binding site

Genes lying distant (>10Kb) from their HIF binding site
Very incomplete separation of HIF-1 vs HIF-2 function by gene ontogeny programs

HIF-1
Metabolic, cytostatic responses (less oxygen demand)?

HIF-2
Reparative responses (more oxygen supply)
Evolution of distinct characteristics of the HIF response

HIF-1 (early invertebrate form) versus HIF-2 (more modern vertebrate form)

Differences in transcriptional biochemistry - produced by agnostic variation

- HIF-1 dominant action at promoters – widely expressed genes
- HIF-2 enhancer action; dominant action on RNA regulatory networks – more cell-type specific genes

Differences in physiological function - produced by Darwinian selection

- HIF-1 generally expressed, core role in development, general cellular functions, metabolism
- HIF-2 cell-specific expression, major roles in higher animal physiological adaption

A fundamental design flaw for rationale drug development
Darwinian biology is at odds with rational reductionist drug design

But might there be drug anyway?
So what about renal medicine?
Why does Epo production fail in diseased kidneys?

Loss of Epo production in locally injured kidney – changes in morphology and markers in interstitial fibroblasts
Erythropoietin-producing potential in diseased kidneys?

Total inactivation of HIF prolyl hydroxylases reveals enhanced Epo-producing potential of diseased kidneys

Souma et al. JASN 08/06/2015

PHD1, 2, 3 triple k/o (Epo-Cre)

Unilateral ureteric obstruction model

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Action of HIF prolyl hydroxylase inhibitor to increase plasma-EPO levels in healthy controls and in HD patients with and without remaining renal tissue.

Bernhardt W M et al. JASN 2010;21:2151-2156
Epo-production is down-regulated in diseased kidneys even when cell populations with Epo-producing potential are expanded. Epo-production can be re-activated by inactivation of HIF prolyl hydroxylases (alone). Epo-producing potential might be variable (even enhanced). Possibility of intrinsically variable clinical responses depending on the status of the renal interstitium (cellular milieu and drug concentration).

Aim to stimulate Epo production alone?  
Aim to stimulate the general hypoxia response?  
+ Benefits?  
+ Risks?

Strategy for PHI in renal anaemia?
HIF prolyl hydroxylase inhibitors appear safe and effective in anaemia correction in medium term (months) studies

Randomized placebo controlled dose ranging study of GSK1278863 over 28 days *AJKD 67 861-871 (2016)*

Lower plasma Epo levels (effective dose 10-25mg od)
Better iron balance?
Effective in the setting of inflammation?
Define molecular mechanism at the molecular level
Define integrated physiology at the physiological level
Define clinical effects at the clinical level
Nothing (much) else will do
With grateful thanks to:
Martin Attwood, Tammie Bishop, Gloria Chang, Matthew Cockman, James Fielding, Norma Masson, James McAuliffe, Mike McDonough, David Mole, James Platt, Chris Pugh, Rafik Salama, Virginia Schmid, Johannes Schödel, Christopher Schofield, Peter Simpson, James Smythies, Min Sun, Ya-Min Tian, Atsu Yamamoto, Tzu-Lan Yeh

With financial support from the Wellcome Trust, the Ludwig Institute for Cancer Research, the Jeantet Foundation, CRUK, the MRC, BBSRC and the BHF
Immune cell phenotypes following modulation of HIF prolyl hydroxylases

Single dose of prolyl hydroxylase inhibitor (FG-4497) to donor results in sustained improvement in rat kidney allograft survival

Bernhardt et al (Kai Eckardt and colleagues, Erlangen) PNAS 106 21276-21281 (2009)

Severe lymphoid dysregulation following sustained (8 week) general shPHD2 k/d

Astu Yamamoto and Chris Pugh – unpublished data

Control  Phd2 KD  Phd2/Hif1a KD  Phd2/Hif2a KD

LNs

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved