Rheumatology: Leading the molecular revolution in the 21st century?

Iain B McInnes PhD, FRCP, FRSE, FMedSci

Muirhead Professor of Medicine, ARUK Professor of Rheumatology
Director, Institute of Infection, Immunity and Inflammation,
University of Glasgow
Scotland, UK
A molecular revolution in clinical medicine - RA?

• Lessons from a decade of progress…?
 • Celebrating success
 • Embracing therapeutic failure
 • Unmet needs remaining

• Towards the future?
 • Pathogenesis lead interventions
 • Novel therapeutics
 • Enriching for success

• Systems or “the system”
Rheumatoid arthritis: recognition of a syndrome
Therapeutics in RA: impact across the syndrome

- Reduced signs and symptoms of inflammation
- Reduced erosive progression
- Favorably altered co-morbid features:
 - vascular surrogates risk profile
 - osteoporosis
 - cognitive function
- Improved employability
- Remission achievable for a proportion
- ...
A pre-molecular history of arthritis management...

Willow (Salix) Johann Andreas Buchner

SALICIN

ACTH, MTX

NSAIDs GC +DMARD

1829 1948 1994
Lessons from a decade: molecular hierarchies exist

Many vulnerable nodes in inflammatory cascade – cell receptors and their requisite signalling pathways?

Cytokine-targeting biologics

- Anti-IL-1s
 - IL-1
 - Extracellular
 - Intracellular
 - Blockade of TNF signalling pathways

- Anti-TNFs
 - TNF
 - Extracellular
 - Intracellular
 - Blockade of IL-6R classic and trans signalling pathways

- Tocilizumab
 - Extracellular
 - Intracellular
 - Abatacept
 - Blocks co-stimulatory signal

Cell-targeting biologics

- Abatacept
 - T-cell receptor
 - Inhibition of T-cell activation

- Rituximab
 - T cell
 - B cell
 - Depletion of B cells

Lessons from a decade:
Towards molecular taxonomy in inflammation medicine?

See for example: Smolen J et al *Lancet* 2008
McInnes IB et al *Lancet* 2015

AID, autoinflammatory disease including Still’s disease; CD, Crohn’s disease;
GCA, giant cell arteritis; IL, interleukin; JIA, juvenile idiopathic arthritis; RA, rheumatoid arthritis;
SpA, spondyloarthritis; TNF, tumor necrosis factor; UC, ulcerative colitis

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
The impact of strategy can be dramatic: TICORA

<table>
<thead>
<tr>
<th></th>
<th>Intensive group (n=55)</th>
<th>Routine group (n=55)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EULAR good response</td>
<td>80%</td>
<td>44%</td>
<td>3.6 (1.5, 8.7)*</td>
</tr>
<tr>
<td>EULAR remission</td>
<td>65%</td>
<td>16%</td>
<td>9.6 (3.8, 24.3)*</td>
</tr>
<tr>
<td>ACR 20</td>
<td>89%</td>
<td>64%</td>
<td>4.0 (1.5, 10.5)*</td>
</tr>
<tr>
<td>ACR 50</td>
<td>82%</td>
<td>45%</td>
<td>4.9 (2.1, 11.4)*</td>
</tr>
<tr>
<td>ACR 70</td>
<td>70%</td>
<td>18%</td>
<td>9.5 (3.9, 23.0)*</td>
</tr>
</tbody>
</table>

*p<0.001
Lessons from a decade: strategies matter in chronic disease

‘Treat to target’… but ‘knowing when to stop?’

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Lessons from a decade: remission in chronic disease?

Remission will lead to:
- lower radiographic progression
- sustained physical function
- mortality
- employability (?)

![Graph showing treatment initiation and progression rates with and without delay.]

Lessons from a decade: remission in chronic disease?

Despite early and aggressive intervention…

• Remission rates remain low, however defined
• Drug therapeutics are required for such disease state
• Damage is progressive in a proportion of patients
• Socioeconomic decline is ongoing
• Morbidity and mortality remain significant

• Management is not pathogenesis driven!

RA: over time does the immune system ‘adapt’ to the new scenario – embracing chronicity?

Immune adaptation: recruitment of new pathways
- Implications for therapeutics and the move to prevention

Lessons from a decade: do chronic diseases require tissue adaptation?

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
A molecular revolution in clinical medicine - RA?

• Lessons from a decade of progress…?
 • Celebrating success
 • Embracing therapeutic failure
 • Unmet needs remaining

• Towards the future?
 • Pathogenesis lead interventions
 • Novel therapeutics
 • Enriching for success

• Systems or “the system”
Key current concepts of RA pathogenesis – clinical relevance?

Genetics
- Clear evidence of immune function contribution
- Epigenetic abnormalities, e.g. methylation, microRNA, chromatin structure

Environmental components
- Smoking (and other pulmonary stimuli, e.g. silica)
- Microbiome – periodontal disease, gastrointestinal / pulmonary mucosa
- Obesity, alcohol, vitamin D...

Evidence for early immune and metabolic perturbation – pre-arthritis onset?
- Autoantibodies – glycosylation status
- Epitope spreading
- Cytokines & chemokines
- Dyslipidaemia, metabolic syndrome

GWAS, genome-wide association studies
Towards pathogenesis lead interventions?

- Sequential, varied interactions...
 - Best explained by a multi-hit model?
- Subserved by complex immunology...
 - Adaptive
 - Innate
 - Perpetual
- Evolving concept of ‘RA syndrome’

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Towards pathogenesis lead interventions?

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved.
Areas of potential interest in current development in RA?

Moieties, Pathways and Cells...

- DAMPs / PAMPs and other innate receptors
- *Chemokines / cytokines*
 - “me too” sarilumab, sarukumab...
 - e.g. CCR1, GM-CSFR, IL-17, IL-20, IL-21, BLyS...
- *Small molecule inhibitors* e.g. JAK, BTK, PI3K, epigenetic targets...
- Post translatational modification – PADI4
- Autoreactivity e.g. T cell, B cell, dendritic cells, MSC....
- Neuroendocrine pathways
 - e.g. vagal drive
 - GnRH antagonists

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Learning from success and failures: Targeted therapy based on interfering with (which?) critical immune cells and cytokines

Synovial histopathology

- Fibroblast
 - OSM, IL-11, IL-17, IL-18, IFN, IL-19, IL-20, IL-22, TGFβ

- Myeloid
 - Macrophage, dendritic cell
 - IL-11, IL-10, IL-12, IL-27, IL-32, OSM, GM-CSF, M-CSF, IFN, PDGF, RANKL, TGFβ

- Lymphoid
 - T cell, B cell
 - IL-2, IL-4, IL-7, IL-9, IL-10, IL-12, IL-13, IL-15, IL-21, IL-23, IL-27, IFN, TGFβ

Cytokine interplay

Synoviocyte

Bone and cartilage

GM-CSF = granulocyte macrophage colony-stimulating factor, IFN = interferon; M-CSF = macrophage colony-stimulating factor; OSM = oncostatin M; PDGF = platelet-derived growth factor; RANKL = receptor activator of nuclear factor-κB ligand; TGF = transforming growth factor

Learning from success and failures: Targeted therapy within the cell to target cytokines?

TNF, IL-1

FcR, BCR

FcR, Cytokine R

GPCRs e.g. chemokines

TNF, IL-1

Various Cytokines

BTK

PI3K

Syk

PI3K

Kinases

ERK

JNK

p38

Second messengers

Lipid messengers

Gas

AC

PDE4

PKA

JAK

JAK

Signal transduction

Gene transcription

Nucleus

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Enriching for response:
Developing biomarkers in chronic inflammation

Adapted from:

Descriptive Biomarkers
- Imaging-based biomarkers (X-ray, CT, MRI, DEXA)
- Acute-phase reactants (e.g., ESR, CRP, SAA)

Mechanistic Biomarkers
- Autoantibodies
- Gene-expression signatures
- Cytokines
- Immune-cell types
- Genotype

- Diagnosis of symptomatic disease
- Assessment of disease activity
- Assessment of drug-related toxicity

Breach of tolerance
- Genetic susceptibility
- Epigenetic modification
- Environmental factors

Transition event
- Autoreactivity
 - ACPA
 - RF
- Synovitis
- Structural damage
- Comorbidity

© Shutterstock images. Sebastian Kaulitzki
© Shutterstock images. NMID

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Do we really need a personalised medicine based approach?

Consider:

• Responses post TNFi are equivalent regardless of treatment modality
• Combinatorial biologic approaches increase AEs but not efficacy

therefore…

Forget personalised medicine and focus on abating disease activity

Josef S Smolen,¹,² Daniel Aletaha¹

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Do we really need a personalised medicine based approach: lessons from the real world?
Do we really need a personalised medicine based approach: lessons from the real world?

<table>
<thead>
<tr>
<th></th>
<th>TNFi-first</th>
<th>Rituximab-first</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicines, infusions, clinics</td>
<td>£10,356</td>
<td>£8,391</td>
<td><0.001*</td>
</tr>
<tr>
<td>Primary care</td>
<td>£370</td>
<td>£366</td>
<td>0.92</td>
</tr>
<tr>
<td>Blood tests, Xray</td>
<td>£163</td>
<td>£141</td>
<td>0.51</td>
</tr>
<tr>
<td>Total</td>
<td>£11,523</td>
<td>£9,405</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Bootstrap estimated mean cost difference (95% CI) = £1,999 (£2,755, £1440)

Quality-Adjusted Life Years (1-EQ-5D AUC)

<table>
<thead>
<tr>
<th></th>
<th>QALYs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QALYs</td>
<td>0.481</td>
<td>0.454</td>
<td>p=0.25</td>
</tr>
</tbody>
</table>

Bootstrap estimated mean QALY difference (95% CI) = 0.028 (-0.041, 0.094)

* Wilcoxon
The promise of personalised medicine

Disease population -> One size fits all treatment
Mixed responders, mixed outcomes

Disease population -> Stratification tools -> Disease cohorts -> Matched treatments
More responders, better outcomes
The promise of personalised medicine
Profiling the circulating CCS signature in early RA

- SERA - >1000 patients
- 123 genetic loci
- *in silico* prediction of high-confidence CCS candidates
 - 13,322 CCS probes
 - 99 ± 64 CCS per loci
 - Tested in quadruplicate

Carini C, Goodyear C et al McInnes IB (submitted 2016)
Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
The critical challenge in biomarker development in chronic inflammatory diseases?

"There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact."

Mark Twain from Life on the Mississippi
A molecular revolution in clinical medicine - RA?

• Lessons from a decade of progress…?
 • Celebrating success
 • Embracing therapeutic failure
 • Unmet needs remaining

• Towards the future?
 • Pathogenesis lead interventions
 • Novel therapeutics
 • Enriching for success

• Systems or “the system”
The current translational model?

GA FitzGerald,

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Does our translational model work...

Genomic responses in mouse models poorly mimic human inflammatory diseases

Junhee Seok1,*, H. Shaw Warren1,*, Alex G. Cuenca1,*, Michael N. Mindrinos1,*, Henry V. Baker1,*, Weihong Xu1,*, Daniel K. Richards1,*, Grace P. McDonald-Smith1,*, Hong Gao1,*, Laura Hennessy1,*, Celeste C. Finnerty1,*, Cecilia M. Lopez1,*, Shari Honari1,*, Ernest E. Moore1,*, Joseph P. Minei1,*, Joseph Cusciere1,*, Paul E. Bankay1,*, Jeffrey L. Johnson1,*, Jason Sperry1,*, Avery B. Nathens1,*, Timothy R. Billiar1,*, Michael A. West1,*, Marc G. Jeschke1,*, Matthew B. Kleir1,*, Richard L. Gamelli1,*, Nicole S. Gibran1,*, Bernard H. Brownstein1,*, Carol Miller-Graziano1,*, Steve E. Calvano1,*, Philip H. Mason1,*, J. Perren Cobb1,*, Laurence G. Rahme1,*, Stephen F. Lowry1,*, Ronald V. Maier1,*, Lyle L. Moldawer1,*, David N. Herndon1,*, Ronald W. Davis1,*, Wenhong Xiao1,*, Ronald G. Tompkins1,*, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program

*Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94305; Departments of 1Pediatrics and Medicine, 2Anesthesiology and Critical Care Medicine, and 3Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; 4Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610; 5Innolity Inc., Redwood City, CA 94063; 6Department of Surgery, Massachusetts General Hospital, Boston, MA 02114; 7Department of Surgery, Harborview Medical Center, Seattle, WA 98195; 8Kimmel Children's Hospital and Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550-1220; 9Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80262; 10Department of Surgery, Parkland Memorial Hospital, University of Texas, Southwestern Medical Center, Dallas, TX 75390; 11Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, WA 98195; 12Department of Surgery, University of Rochester School of Medicine, Rochester, NY 14642; 13Department of Surgery, University of Pittsburgh Medical Center Presbyterian University Hospital, University of Pittsburgh, PA 15213; 14Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada M5B 1W8; 15Department of Surgery, San Francisco General Hospital, University of California, San Francisco, CA 94143; 16Division of Plastic and Reconstruitive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 3M9; 17Department of Surgery, Stritch School of Medicine, Loyola University, Chicago, IL 60613; 18Department of Anesthesiology, Washington University, School of Medicine, St. Louis, MO 63110; and 19Department of Surgery, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903

Contributed by Ronald W. Davis, January 7, 2013 (sent for review December 6, 2012)

Perhaps not....!
Does our translational model work...
What is Systems Medicine?
How could systems medicine help?

- Improved molecular resolution of key cellular / molecular players.
 - *e.g. the true IgG repertoire in healthy individuals or in response to infectious disease.*

- Improved methods for stratifying patient subgroups in heterogeneous diseases
 - leading to improved diagnostics and therapeutic regimes.

- Insight into the systemic effects of medications.
 - *Lipid metabolism, hepatic toxicity*....

- Insight into the disease process for new therapies
 - drug design, drug repurposing and best practice.

http://genome.cshlp.org/content/19/10/1817 – Robert Holt T-cell receptor beta chain sequencing.

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
The systems “conundrum”

• More data should lead to more insight
• Which cell, which parameter, which platform?
 – not all information will be informative, reproducible or insightful
 – no formula for working this out.
• Becomes a computational/statistical question
 – how do we bring biology or clinic back into the picture?
The data “conundrum”
The three principals for making sense of Systems-scale data

– **Modularity**: finding networks and pathways
– **Emergence**: gaining insight from layers of data.
– **Robustness**: understanding network properties

In practical terms, we must resource:

1/ generation of quality data
2/ tools for visualization, integration and sharing of data
3/ collaboration between bioinformatics, biostatistics and biologists to mine the data
or…. “How do we choose new biomarkers & targets in a rational way?”

- **Linear models**
 - TNF is predominant

- **Parallel models**
 - TNF and IL-6 sit in parallel but can be dominant

- **Network theory**
 - Complex networks of cytokines exist in functional modules
 - Predicated on their role in host defense
or…. “How do we choose new biomarkers & targets in a rational way?”

- Linear models
 - TNF is predominant

- Parallel models
 - TNF and IL-6 sit in parallel but can be dominant

Feldmann M et al *Cell* 1996 85;307
Cytokines and RA – embracing complexity

Adaptive immunity
- Ectopic lymphoid structure
- T cells / DC
- B cells

Lining layer
- FLS
- Macrophages

Interstitium
- Mast cells
- Macrophages
- Neuroreceptors

Trafficking
- Angiogenesis
- Lymphangiogenesis
Cytokines and RA
– embracing complexity

Adaptive immunity
- Ectopic lymphoid structure
- T cells / DC
- B cells

Interstitium
- mast cells
- macrophages
- neuroreceptors

TNF, IL-1, GM-CSF
IL-6, IL-15, IL-17
IL-18, IL-20, IL-23, IL-32...
Inflammatory chemokines

Lining layer
- FLS
- macrophages

Trafficking
- angiogenesis
- lymphangiogenesis

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Evolving models for cytokine hierarchies in synovitis?

- **Linear models**
 - TNF is predominant

- **Parallel models**
 - TNF and IL-6 sit in parallel but can be dominant

- **Network theory**
 - Complex networks of cytokines exist in functional modules
 - Predicated on their role in host defense
RA: can we define functional modules of inflammatory moieties within biologic networks?

RA: can we define functional modules of inflammatory moieties within biologic networks?

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Empowering clinical rheumatologists to navigate data to find useful patterns

Traditionally

- Biology-group generates data
- Black Box
- Bioinformatician analyses data

3iiiformatics.org approach

- Biology-driven question
- Clinical Researcher
- Bioinformatician
- Data application

Direct and intuitive interaction with your own data

Collaborative environments that enable biology
...drives clinical insight
...as well as facilitates computational outcomes

Copyright (c) 2016 Department of Medicine, The University of Hong Kong. All rights reserved
Rheumatology – leading the molecular revolution?

Plausible, enticing therapeutics are emerging in RA and are required…
• Unmet needs remain…
• Capitalizing on ‘new’ immunopathology going forward

Encouraging efficacy, but…
• Strategically ill-defined?
• Biomarkers to revolutionize the approach?
• Integrating systems versus minimalist science

Towards a molecular taxonomy…
• Define clinical endotypes
• Towards preventative therapeutics
• Can we repair those already damaged?